Анализ существующих конструкций

Из опыта известно, что солнечные элементы генерируют максимальную энергию, только когда они располагаются точно перпендикулярно направлению солнечных лучей, а это может случиться только один раз в день. В остальное время эффективность работы солнечных элементов составляет менее 10 %.Значительно повысить эффективность солнечного модуля можно, если снабдить его поворотным механизмом, оснащенным автоматической системой слежения за солнцем.

Система слежения за солнцем - это устройство для ориентирования панели солнечных батарей или для удержания солнечного отражателя или линзы повернутыми к солнцу, подобно гелиостату. Также, это один из способов повышения производительности солнечных элементов. От устройств, снабженных такой системой, требуется высокая точность, чтобы быть уверенным в том, что собранные солнечные лучи падают прямо на соответствующее приспособление.

Существует два основных типа поворотных механизмов для солнечных модулей: одноосевые и двухосевые (рис.1). Одноосевые реализуют поворот солнечного модуля вокруг единственной центральной оси, что довольно удобно для электростанций большого масштаба. Двухосевые позволяю более гибко отслеживать положение солнца, контролируя как азимутальный, так и угол склонения солнца над горизонтом.

Рис.1. Одноосевые и двухосевые солнечные установки

Устройства, снабженные системой слежения за солнцем, также могут различаться по типу и виду используемых датчиков, принципам функционирования системы управления, конструктивным особенностям. Рассмотрим некоторые типы подобных устройств.

Система слежения за солнцем 01ARX1

Система слежения за солнцем для солнечных батарей 01ARX1 (рис.2) состоит из фотодетектора, блока управления (рис.3), GPS - приемника [10]. Она может работать с одним актуатором (движение по одной оси) или двумя актуаторами (движение по 2 осям) для поворота панели солнечных батарей вслед за солнцем.

Рис.2. Схема системы слежения за солнцем 01ARX1

В качестве актуаторов используются устройства для передвижения панели солнечных батарей 01G360 (рис.4, 5).

Рис.3. Схема расположения выводов контроллера

Рис.4. Устройства для передвижения панели солнечных батарей 01G360

Горизонтальные одноосевые системы слежения обычно используются в солнечных электростанциях и широкомасштабных проектах. Сочетание улучшения энергоэффективности, низкой стоимости и простоты монтажа приводит к значительной экономии. Горизонтальные одноосевые устройства слежения также значительно повышают производительность в течение весны и лета, когда солнце высоко в небе.

Рис.5. Внешний вид устройства 01G360

Жесткость каркаса и простота механизма влекут за собой высокую надежность, что снижает затраты на техническое обслуживание. Так как панели горизонтальны, их можно компактно разместить на трубчатой оси, не опасаясь, что они будут друг друга затенять, а также оставив их легкодоступными для очистки.

Вертикальные одноосевые системы вращаются только вокруг вертикальной оси, панели на них закрепляются вертикально под фиксированным, регулируемым или отслеживаемым углом наклона. Такие системы слежения с фиксированным или (сезонно) регулируемым углом наклона подходят для высоких широт, где верхняя точка видимой солнечной траектории не очень высоко, но что приводит к длинным летним дням, когда солнце движется по длинной дуге.

Перейти на страницу: 1 2 3 4

Еще статьи по теме

Принципы построения SDH транспортных сетей
Основное применение SDH с момента ее появления - построение транспортных сетей для передачи цифровых потоков между телефонными коммутаторами. С развитием компьютерных сетей, Интернета, технологий передачи данных (FR, ATM и ...

Разработка конструкции блока электронной вычислительной аппаратуры
Конструирование, являясь составной частью процесса разработки ЭВМ, предоставляет собой сложный комплекс взаимосвязанных работ, при выполнении которых необходимы учет разносторонних требований к конструкции устройства, знание ...

Главное меню

© 2019 / www.techsolid.ru